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The process of flux rope formation in a convecting cell is studied. The magnetic field 
has both a meridional and an azimuthal component, and so corresponds to a twisted 
field. Convection occurs in this cylindrical cell because of heating from below, and is 
assumed to take an axisymmetric form. Only the Boussinesq problem is studied here, 
but both the kinematic and the dynamic regimes are considered. 

The two cases where the twisted field is due to (a)  an imposed flux of vertical current 
and (b) an imposed flux of vertical vorticity are considered. Strongly twisted ropes can 
be generated more easily in case (b) than in case (a).  

We show that convection can produce ropes twisted in the opposite direction from 
that of the initial field. We also find that solutions can be oscillatory even when linear 
theory predicts steady solutions. 

1. Introduction 
There is now abundant evidence that the solar magnetic field is concentrated into 

ropes of magnetic flux (see e.g. Priest 1982). A key process for this concentration is the 
interaction between the magnetic field and convection taking place on and below the 
photosphere of the Sun. Convective eddies shepherd flux into comparatively stagnant 
regions at the cell boundaries, or, in axisymmetric flows, at the cell centre. A simple 
configuration in which this process can be analysed is an axisymmetric convecting cell, 
with gravity parallel to the cylinder axis, and an unstable temperature gradient. A 
magnetic field with an initially uniform vertical component is applied across the 
cylinder. The case where the magnetic field has no azimuthal component was examined 
by Galloway, Proctor & Weiss (1978), and Galloway & Moore (1979). For reviews of 
this and related work, see Proctor & Weiss (1982), Hughes & Proctor (1988), or see 
Nordlund et al. (1992) for a complementary approach where an ambitious large-scale 
simulation is described. 

The new situation analysed in this paper is the case when there is an azimuthal as 
well as an axial magnetic field. This correspcnds to a twisted field, which implies the 
existence of axial (and radial) currents flowing in the cylinder. In this situation, Lorentz 
forces will drive an azimuthal swirl around the cylinder, which can in turn affect the 
magnetic field. This work is partly motivated by the desire to understand the process 
of flux concentration at supergranule boundaries : the observed field structure is often 
considerably more complex than the twist-free field assumed by the standard theory. 
We are also interested in assessing the extent to which convection cells which happen 
to have substantial helical motions can twist up magnetic field, thereby generating 
vertical currents. On the Sun, such currents would pass up into the overlying 
chromosphere and corona, giving the field there the non-potential character it needs to 
be able to produce various forms of solar activity, as well as coronal heating. A 
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discussion of observations of these currents is given in Melrose (1991), together with 
an analysis of the theoretical problems they pose. 

The development of convection in the presence of twisted fields is also of importance 
in planetary interiors : however, in this application rapid rotation is often important, 
whereas this is not the case in the present work. Nevertheless, we explore values of the 
Roberts number q = K/Y which are both greater than unity (the most common case 
in stars), and less than unity (appropriate for planetary interiors). We recall that at 
q > 1 magnetoconvection with a purely axial field can occur in oscillatory form if the 
Chandrasekhar number Q is large enough. As we shall see, in this problem oscillatory 
behaviour can occur at both q > 1 and q < 1 ; also, if the curved boundary of the cell 
is rotating, it is possible for oscillations to occur even at small Chandrasekhar number. 

The present work makes two substantial simplifications over the astrophysical 
problem right at the outset: our study is Boussinesq (i.e. almost incompressible), and 
only axisymmetric solutions are considered. The use of the Boussinesq assumption has 
been well-documented (Proctor & Weiss 1982), and whilst care is obviously necessary 
in applying the results, more involved compressible calculations have confirmed the 
general picture provided by Boussinesq models of magnetoconvection. The assumption 
of axisymmetry is more problematic. Particularly for large twists, the whole zoo of 
plasma pinch instabilities can enter the picture, and in many cases it is known that non- 
axisymmetric modes are the most unstable. We have attempted to show in 93 that it 
is at least plausible that there are parameter regimes where axisymmetric modes are 
preferred, and we expect convection may reinforce this tendency. Examples of 
axisymmetric twisted sunspots on the Sun show that such configurations can and do 
exist in Nature. But our main reason for assuming axisymmetry is to keep the problem 
manageable, both computationally and from the point of view of theoretical 
understanding. Even so, the results are complicated, and sensitive to the way the 
problem is driven through the boundary conditions. 

Some progress was made on this problem by Childress (1979), using asymptotic 
methods. The main focus of attention there was the calculation of the strength of the 
dynamo-theoretic a-effect, which is non-zero in this geometry because of the non-zero 
helicity. This was subsequently extended to the context of fast dynamos by Cliildress 
& Soward (1985) and Soward & Childress (1986). We have related our model to this 
work elsewhere (Jones & Galloway 1993), showing in particular how the a-effect is 
suppressed when the central magnetic flux rope becomes dynamically active. In this 
paper we concentrate on more basic issues such as the formation of twisted flux ropes, 
the distribution of angular momentum, and the appearance of steady or oscillatory 
convection. 

There are a number of different ways in which an azimuthal field can be created (we 
are not here considering a dynamo, so that azimuthal field will decay unless it is 
imposed somehow from the boundary, or driven by differential rotation). Here these 
are represented by applying different boundary conditions. The conditions we will 
consider fall into two classes, those in which a vertical current passes through the 
endwalls of the cell, and those in which the curved boundary is rotated at a certain 
angular velocity. 

The first situation could arise when an initially untwisted flux tube of uniform field 
strength is given a twist through a finite angle, which creates a uniform vertical current. 
Then convection occurs, and concentration of the twisted flux tube takes place. The 
convective part of this process can be modelled by specifying B+ on the curved 
boundary, which ensures that the integrated vertical current through the cylinder is 
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fixed. Even within this model we can vary the boundary conditions on the azimuthal 
velocity, and two possibilities are considered. 

The second situation occurs when the integrated flux of vertical vorticity through the 
cell is prescribed, rather than the current. This implies that the angular velocity on the 
curved boundary is fixed. This then generates azimuthal field through differential 
rotation. In stars, such rotational driving is to be expected on the largest scales by 
virtue of the Coriolis force. For the smaller scales occurring at supergranule boundaries 
(where our model is at its most appropriate), the cells may be embedded in a region of 
non-zero vorticity having its origin in the solar rotation and being enhanced by the 
large-scale motion. It is in the nature of turbulence that convecting eddies will 
sometimes have net rotation even on small scales, although how persistent this will be 
is unclear. 

Section 2 sets up the problem in terms of equations and boundary conditions, and 
$ 3  briefly considers some aspects of linear theory (including remarks on non- 
axisymmetry). Sections 4, 5 and 6 give detailed descriptions of the results for various 
boundary conditions. Section 7 provides such conclusions as are possible given the 
complexity and detailed nature of the results; some attempt is made to relate these to 
the Sun although for the most part this task is deferred to a later paper. The text ends 
with an Appendix on the numerical methods. 

2. Basic equations 
We consider the motion of incompressible, electrically-conducting fluid in a cylinder 

of height d and radius ro with its axis parallel to the direction of gravity. The velocity 
and the magnetic field are assumed to be independent of 0 where ( r ,  0, z )  are cylindrical 
polar coordinates. The cylinder has a prescribed quantity of vertical magnetic flux 
passing through it: in the absence of motion, diffusion ensures that this field is uniform, 
of strength Bo. To drive convection we impose a temperature difference AT between the 
ends of the cylinder, so that it is heated from below. No heat flux escapes from the 
curved sidewall. 

The equations we need to describe the convection are the Navier-Stokes equation 
and the induction equation, together with various supplementary relations defining 
magnetic potential, streamfunction and current (see e.g. Proctor & Weiss 1982). The 
viscous, thermal, and magnetic diffusivities are v, K, and 7, respectively. We give the 
equations in dimensionless form, with d 2 / K  as the unit of time, d as the unit of length, 
B, as the unit of magnetic field, and AT as the unit of temperature, T. Since the fluid 
is Boussinesq, and V - B  = 0, we can let 

where ?,h is the streamfunction, h is the specific angular momentum, x is the poloidal 
magnetic potential and b is a quantity conserved by axisymmetric motion if there is 
no diffusion. We write the current as j = V x B = (j,., rJ,jz). The potential vorticity 
SZ = oo / r ,  where wo is the 0-component of the vorticity, V x u. 

Then 
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and the poloidal part of the velocity distribution is given by 
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--+V.(uO) = V. 
a 0  
at  

We write the equations in this conservative form for later numerical convenience. 
Here the Chandrasekhar number, Q, the Rayleigh number, R, the Prandtl number, ~ a ,  

and the Roberts number q are given by 

V K 
0-z- 

gct ATd3 
, R =  K ,  q = - 2  

Bi d2 
PP9V KV 7 

Q=-  

,u being the permeability, p the density, c1 the coefficient of expansion and g the local 
gravity. Note that h is measured in units of K ,  so that if h and ~a are 0(1) the 
corresponding Ekman number v / h  is O(1): we are not concerned with rapid rotation. 
The angular momentum is determined by 

(2.3) -+V-(uh) ah = -V-(Br2b)+RaV- QfJ 
at  4 

The toroidal field is governed by the 8 component of the induction equation, 

while the poloidal part is governed by 

The final equation we need is the temperature equation, 

aT 
-+V*(uT) at  = V2T. (2.6) 

As we shall see, the choice of boundary conditions is not straightforward : however, 
we shall assume throughout that the poloidal velocity satisfies stress-free conditions, so 

$ = O = O  o n z = 0 , 1  a n d o n r = A ,  (2.7) 

where A = ro/d is the aspect ratio. We also assume throughout that 

(2.8) 
aT % = O  o n z = 0 , 1 ;  x=0.5A2 and-=O o n r = A .  aZ ar 

Note that x = 0.5r2 gives a uniform vertical field of strength one in the static state. The 
cylinder and the boundary conditions specified above are sketched in figure 1. The 
rectangular section shown there is the domain over which the subsequent contour plots 
are based. 

2.1. Generation of toroidalfield 
We first consider the question of whether the toroidal field in our model has to be 
imposed, either by having a vertical current flowing through the cell or by imposing a 
non-zero angular momentum at a boundary, or whether toroidal fields can be 
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FIGURE I .  The cylinder, with the section used for displaying subsequent contour plots, is shown 
with the fixed boundary conditions. 

generated spontaneously. With a vertical imposed field, motions involving h and b are 
naturally described as torsional Alfven waves, so we consider possible driving 
mechanisms for such waves. 

It might seem obvious that an AlfvCn wave will decay diffusively since it cannot be 
driven by buoyancy forces as it involves only toroidal motions. However, if we form 
the energy equation for the AlfvCn waves, by multiplying (2.3) by h / r 2 ,  (2.4) by 
Qgbr2/q, adding, and integrating over the whole cylinder, we obtain 

provided the boundary conditions on h and b are such that 

Is hV ($) - d S  = ls bV(r2b) - d S  = 0 (2.10) 

on the cylinder surface. From (2.9) we see that even a given fixed velocity field can 
potentially drive Alfven waves provided that regions where the radial velocity is inward 
have large angular momentum and low toroidal field, and regions where the angular 
velocity is outward have large field and low angular momentum. Nevertheless, we were 
not able to find any example $ which drives AlfvCn waves. The difficulty appears to be 
that any significant $ rearranges the distribution of b and h, sweeping them into 
boundary layers and hence enhancing the diffusive dissipation. In all solutions 
examined, this enhanced dissipation wiped out any energy gains from the terms 
involving $ in (2.9). We therefore conjecture that Alfvtn waves cannot be self-excited 
with boundary conditions satisfying (2.10). 

In consequence, we must examine problems in which either azimuthal field or 
differential rotation is imposed from the boundaries. There are a number of different 
ways in which this can be done, but here we consider three different sets of boundary 
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conditions. In case A we adopt boundary conditions convenient for linear theory, 
namely 

- h = O  o n z = 0 , 1 ;  h = 0 ,  b = b ,  o n r = A .  (2.11) ab - _  
a Z  

This latter condition on b is equivalent to specifying the integrated vertical current 
through the cylinder. Case A is appropriate when the boundary conditions are periodic 
in z,  so that a whole array of convecting cylinders is present. However, for a cylinder 
in isolation it is of interest to impose the condition that there are no viscous stresses 
on the cylinder, which gives our case B: 

Here we have again imposed the azimuthal field on the r = A boundary; the 
condition on b at z = 0, l  avoids a radial current sheet developing at the endwalls, 
although it does permit a non-zero magnetic torque at z = 0,l. Case B is probably the 
most realistic for a convective cell developing inside a region of twisted magnetic flux. 

The third case considered is one where the angular velocity is prescribed at r = A, 
so the azimuthal field is initially absent but is produced by continuously rotating the 
flux tube. Imposing the condition on b which corresponds to j ,  = 0 at r = A ,  thus 
avoiding a vertical current sheet developing there, we get case C: 

ab ah a - _ - _  - - 0  o n z = 0 , 1 ;  -(br2)=0, h = w , A 2  o n r = A .  (2.13) 
a Z  az ar 

3. Linear theory 
3.1. Axisymmetric modes 

The equations (2.1)-(2.6) admit solutions of the form @ = 52 = 0, T = 0.5 -z, x = 0.5r2, 
h = wor2, b = b,, corresponding to a state of uniform rotation at angular velocity wo 
with a uniform vertical field and a uniform vertical current of strength 2b,. In this 
section we consider small perturbations to this static solution. If wo = b, = 0, the h' 
and b' fields decouple (primes denote linearized quantities) and we have the magneto- 
convection problem described by Chandrasekhar (1961 ; see also Proctor & Weiss 
1982). The linearized h and b fields then describe damped torsional Alfvtn waves. 
If b, = 0 but w, i 0, we have rotating magnetoconvection also described by 
Chandrasekhar (1961): see also Eltayeb (1972, 1975). If o, = 0 and b, =k 0, we have the 
problem of magnetoconvection in a twisted field, which we were unable to find in the 
literature. However, the stability of the fields without convection has been considered 
(Roberts 1956; see also Parker 1979). We shall not attempt to discuss the full linear 
problem w, + 0 and b, =k 0. Diffusionless instabilities of this type have been studied in 
the context of magnetic stars in a series of papers by Pitts & Tayler (referenced in Pitts 
& Tayler 1985). 

With w, = 0, and boundary conditions A, (2.1 l), the spatial dependence of the 
solution is 

+' - sin (nxz) rJl(kr), 52' - sin (nnz) J,(kr)/r,  x' - cos (nnz) r4(kr),  

b' - cos (nnz) J,(kr)/r, h' - sin (nnz) rJ,(kr), T' - sin (nnz) J,(kr), 
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where the prime denotes the linearized quantity, and non-trivial solutions of J,(kA) = 0 
determine k .  The non-trivial solution with smallest k is generally the most important. 
If the first bifurcation is a pitchfork rather than a Hopf bifurcation, it occurs when 

(3.1) 
where a2 = n2n2 +k2 .  If 2b,/a - 1 > a4/n27c2Q, the instability can set in with negative 
Rayleigh number: this is the ‘sausage’ instability of a pinched plasma. The non- 
axisymmetric version of (3.1) in the diffusionless limit was derived by Roberts (1956). 
Note that 2b, > a implies that for aspect ratio 1 and n = 1 the ‘pitch angle’ of the 
twisted magnetic field (defined as tan-’ (Bo/Bz)) at the radius r = A = 1 is greater than 
68”. Since B, is proportional to r with uniform current, the critical pitch angle nearer 
the axis is less than this. 

Although in many situations n = 1 is the most unstable mode, this is not always true. 
If b, and Q are sufficiently large (which implies the ‘sausage’ instability is active), 
instability can occur with lowest negative Rayleigh number with n > 1. To find the 
critical case when n = 1 and n = 2 onset at the same value of R, we solve (3.1) with 
n = I and n = 2 simultaneously, which gives rise to a cubic equation for Q. Similarly, 
we can find the boundary between n = 2 and n = 3, etc. In figure 2 we plot the critical 
Q for the mode boundaries as a function of b,. In the range of b, and Q plotted, only 
the n = 1, n = 2 and n = 3 modes are preferred, but as b, is increased, the preferred n 
also increases. 

We can also investigate the condition that transition occurs first at a Hopf 
bifurcation. It is convenient to proceed by first finding the condition that a Hopf and 
a pitchfork occur simultaneously (the Takens-Bogdanov bifurcation). This condition 
is that 

Rk2 = a2(a4 + n2nzQ) - 4n4n4Q2b,2(a4 + n2x2Q)-l, 

1 4b:(~( I - 2q) - 1) a(3-2q)+l--- 
a’ 

+0[(~(3-q)+2]+1+cr = 0, (3.2) 
together with (3.1), where 0 = n2n2Q/a4. If b, = 0, (3.2) simplifies to 

so that in this case a Hopf bifurcation can only occur when there is a positive root for 
0, i.e. when q > 1, and for the Hopf bifurcation to occur first as R is increased, the 
scaled Chandrasekhar number 0 must exceed (1 + a)/cr(q- 1). 

When b, =I= 0 (3.2) must be solved numerically. In figure 3, the contours of Q 
corresponding to the positive root of (3.2) as a function of q and b, are shown, with 
cr = 1 and n = 1. For the range of parameter space shown there is only one positive 
root of (3.2) or none. It can be shown by elementary arguments that if q < 1 there 
cannot be more than one positive root. However, if q > 3 and b, z 2a there is a 
possibility of more than one positive root; in such cases a window of Q may exist where 
Hopf bifurcation occurs first as R is increased. In figure 3 there are two regions where 
a Hopf bifurcation can occur first as R is increased; either q > 1 and b, < 2 4  as in 
‘normal’ magnetoconvection, or q < 1 and b, > 2a. In either case, the Hopf bifurcation 
occurs first when Q exceeds the value given in figure 3. For the range of q and b, shown 
in figure 3, the Takens-Bogdanov points occur at negative R if q < 1, so here the 
instability is magnetically driven and the temperature gradient is stabilizing. This is 
what one expects from the usual argument for overstability in doubly diffusive systems 
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FIGURE 2. The critical Q for the simultaneous onset of modes n and n+ 1 is plotted against b,. 
The preferred mode number, n, is also shown. 
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FIGURE 3. Contours of Q for which steady and oscillatory convection onsets simultaneously. Hopf 
bifurcation occurs first if Q exceeds its critical value. ---, Line of simultaneous onset of the steady 
n = 1 and n = 2 modes of convection. 
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(see e.g. Tritton 1988, p. 386). A parcel of fluid can redistribute its azimuthal field by 
oscillating in a gravity wave provided the magnetic diffusivity is large relative to the 
thermal diffusivity, i.e. q < 1. 

However, it should be noted that if b, is moderately large, instability may well onset 
as a pitchfork with n = 2 (or greater) at a lower Rayleigh number than the Hopf with 
n = 1. In figure 3, n = 2 is preferred for all points to the right of the dashed curve, so 
we can only be sure that oscillatory solutions will occur to the left of this dashed curve. 

3.2. Non-axisymmetric modes 
In order to keep the discussion comparatively simple, we shall not in this paper give 
extensive details on non-axisymmetric instabilities and their nonlinear development. 
Even with no magnetic field the non-axisymmetric problem is complicated (see e.g. 
Jones & Moore 1979). We consider only the linear problem where the equilibrium state 
is non-rotating, and the equilibrium magnetic field is B,, = z"+b,r$. Despite the 
complexity of the linear equations, it is possible to reduce them to a single equation for 
the vertical velocity u;. This is achieved by taking the z-components of both the curl 
and the curl-curl of both momentum and induction equations. Elimination of the 
vertical components of magnetic field, current and vorticity then leaves a twelfth-order 
system for ui. If disturbances are proportional to exp(pt), this can be written 

and V g  is the horizontal part of V2. This formula can also be used to derive (3.1) and 
(3.2). A pitchfork bifurcation with p = 0 can occur for modes of the form 

ui N JJkr) exp i(m8 + Az). (3.5) 

This corresponds to a spiral mode. Unfortunately, such modes are not compatible 
with a BCnard type problem, where u: and T' have to vanish on horizontal surfaces. 
If the physical boundary conditions (e.g. stress- free impermeable insulating boundaries 
at z = 0, l  and r = A )  are imposed, the bifurcation will necessarily be a Hopf 
bifurcation, and the eigenvalues and eigenfunctions will require numerical solution, 
which we do not pursue here. Furthermore, if b, =k 0 the vertical vorticity is necessarily 
non-zero, independent of the boundary conditions, which implies that a single solution 
of the form (3.5) will not satisfy the boundary conditions at r = A .  

A few elementary observations can be made: if bo = 0, so there is no twist, m does 
not appear explicitly in the formula for the Rayleigh number, which is therefore (3.1) 
with the second term on the right absent. The situation here is similar to that discussed 
in Jones & Moore (1979). The minimum critical Rayleigh number will depend on m 
since k is determined by the boundary conditions on the r = A wall, which involve 
Bessel functions of order m. For some aspect ratios, axisymmetric modes are preferred, 
for others non-axisymmetric modes, but the linear problem is rather degenerate and 
nonlinear selection mechanisms are likely to be important. 

When Qb, is significant, instability can be driven magnetically rather than thermally. 
The behaviour of periodic modes of type (3.5) may then be more relevant, even though 
they do not satisfy the prescribed boundary conditions. In this spirit, we can ask which 
m-values are preferred for the instability of modes (3.5) if we set R = 0 in (3.4). If we 
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increase b,, at fixed Q, we look for the critical b, at which instability occurs. Because 
modes of the form (3.5) no longer satisfy the boundary conditions, we have to choose 
h and k in some reasonable manner. We fix h = x so that the modes have the same 
spatial period as in the cylinder with fixed ends, and also choose k = x (on the grounds 
that as r +  co modes of all m asymptote to the same period in the radial direction as 
they have in the vertical direction). For this problem, at values of Q < 21.95 modes 
with m = - 1 onset before m = 0 modes as b, is increased, but for Q > 21.95 the 
axisymmetric mode is the first to become unstable as b,, is increased. 

The above analysis is rather crude, as the choice of h and k is somewhat arbitrary. 
However, this critical value of Q is in the dynamically interesting range, and we can 
perhaps conclude that in some cases non-axisymmetric modes, particularly modes with 
Jml = 1, will be significant in the dynamics, while in other situations, particularly at 
large Q, axisymmetric modes will predominate. The relative importance of the various 
modes is also likely to be sensitive to the aspect ratio and boundary conditions imposed 
at r = A and cannot be resolved without detailed numerical calculations. However, in 
the rest of the paper we concentrate on the axisymmetric problem. 

4. Nonlinear development of the instability 
4.1. Steady solutions 

A finite difference program, based on that developed by Galloway & Moore (1979), 
was written to follow the nonlinear development of the initial instability. Numerical 
details are given in the Appendix. The program was started by imposing a small- 
amplitude initial disturbance of the form + - r2(A - r)  sin nz to the static solution with 
wo = 0, b = b,, and evolving the solution in time. 

The equations have a symmetry about the midplane, z = 0.5. This means that for 
every solution with fluid rising at the axis, there is a corresponding solution with fluid 
sinking at the axis: 

} (4.1) 
1c’(r, 4 H - w, 1 - z ) ,  z> tf - Q(r ,  1 - z),  x(r,  z> H x(r,  1 - 4, 

b(r, z )  H b(r, 1 - z) ,  h(r, z )  H - h(r, 1 - z), 

Which of these two solutions is selected depends on the sign of the initial perturbation. 
Note that h reverses sign under the transformation while b does not: this is a 
consequence of boundary conditions A, (2.1 1). Boundary conditions B behave 
similarly, but conditions C imply 

T(r, z )  H - T(r, 1 - z).  

h ( r , z ) ~ h ( r ,  1-z), b ( r , z ) ~ - b ( r ,  1 -z). 

Since the parameter space is rather large, we restricted our attention throughout to 
c = 1 and A = 1 : these values are assumed henceforth without further comment. 

In figure 4 we give an example of a kinematically limited flux rope solution, with 
R = 20000, Q = 0.1, q = 5 ,  b, = 10. In all the plots shown in figure 4 (and similar 
subsequent figures), the axis is on the left-hand side of the box, the right-hand side 
corresponding to the curved wall (see figure 1). The extreme values of the variable 
plotted are given in brackets above the relevant plot, and the nine contours are equally 
spaced at intervals of one-tenth of the difference between these extreme values. 
Contours corresponding to negative values are shown as dashed, zero contours are 
shown as dotted, and positive contours are solid. If the extreme values have the same 
sign (or zero is an extreme), the lowest contour is one-tenth of the difference between 
the extreme values above the minimum, but if the extreme values are of opposite sign, 
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Stream function (0, 1.19 x 10') 

Potential vorticity (0, 1.62 x lo3) 

I J 

Angular momentum (0, 1.78 x 

Angular velocity (0, 1.51 x lo-') 

Magnetic stream function 

TemDerature 

2-current (1.99 x 10'. 2.03 x 10') 

FIGURE 4. Contour plots for the case R = 20000, Q = 0.1, q = 5, b, = 10, CT = 1 and A = 1, 
with boundary conditions A. 
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the contour levels are chosen so that one of the plotted contours is a zero contour. The 
value of Q in figure 4 is very small, and the Lorentz force plays almost no role in the 
vorticity equation, and @, 52 and T take the values they would achieve in non- 
magnetic axisymmetric cylindrical convection (Jones, Moore & Weiss 1976). Since the 
maximum value of the velocity u, in this solution is around 110, the magnetic Reynolds 
number R, defined as IuJ,,,d/y is R, = 550. The meridional flux is highly 
concentrated into a rope at the axis, as expected (Galloway et al. 1978). In this regime, 
b is almost constant at b, across the cell. Advection and diffusion combine to give b this 
constant value, set by the boundary condition. The vertical current is also close to its 
initial uniform value of 2b,. The only departures from this state are created by the 
(small) azimuthal Lorentz force generated primarily by the radial field, since the 
current is mainly vertical. This generates angular momentum in figure 4, which is 
concentrated near the top boundary, where the radial field is. The corresponding 
angular velocity has a maximum on the axis near the top boundary and this stretches 
out toroidal field, which is why the perturbation to b, is concentrated where the angular 
velocity w is greatest. The maximum of b occurs close to the maximum of w but b falls 
to below 6, right in the top corner. However, because the Lorentz force is weak, so is 
h and hence the total range of b at Q = 0.1 goes only from 9.944 to 10.009. For small 
Q this departure from b, will scale linearly with Q. 

In figure 5, we show the equivalent picture for R = 20000, Q = 100, q = 5, b, = 10. 
This is a fairly large Q value, so the flux rope is dynamically limited. With the given 
initial perturbation, the solution evolves into a steady single-cell solution, despite the 
fact that the two-cell solution is preferred by linear theory at these parameter values 
(see figure 2). There is a clear preference for the single-cell solution, because even if the 
initial disturbance is taken as @ N r2(A - r )  sin 2x2, a single-cell solution still results. 

As noted by Galloway & Moore (1979), the flux inhibits convection in the rope 
producing a weak counter-cell and strong negative vorticity, because of the strong 
shear at the edge of the flux rope. The width of the rope is considerably larger than in 
the kinematic case. The b distribution is generally similar to that in the kinematic case, 
but reflects the broadening of b, so that b is also less concentrated. The maximum value 
of b, 33.4, occurs near the axis at the base of the rope, and b drops off monotonically 
as we go up the rope to reach a minimum of 3.94 at the top. It is not easy to get very 
large values of b;  if Q is small, the perturbation in b from its mean value of b, is highly 
concentrated, but b itself never varies much from b,: so no significant amplification of 
b occurs. On the other hand, if Q is large, the velocities are much reduced by the action 
of Lorentz force near the rope, and neither the vertical nor the azimuthal field is very 
strongly concentrated. In the case of figure 5 ,  the peak value of B, in the rope is 
approximately 36 (near the bottom of the rope), and the peak value of Bf in the rope 
(also at the bottom) is approximately 2.8 (recall that B9 = rb) giving a pltch angle of 
only about 4". With b, = 10, the pitch angle of the initial field rises with r to a value 
of about 84" at r = A .  Near the top of the flux rope ( r  = 0.1, z = I), the vertical field 
is much less (approximately 10. l), but the azimuthal field is also very weak (B+ - 0.37) 
and the pitch angle is down to only 2". We conclude that the effect of the convection 
is to concentrate the vertical field more than the azimuthal field, so the flux rope is 
much less twisted than the original unconcentrated field. In essence this comes about 
because the vertical flux can be kinematically concentrated, whereas the azimuthal flux 
cannot. Azimuthal flux can only be changed in this model by the action of Lorentz 
force, but when this is active, narrow flux ropes cannot be produced. This suggests that 
to produce thin twisted flux tubes, we must appeal to some non-magnetic forcing to 
produce the azimuthal swirl. 
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Angular momentum (-2.76 x 1.5) 
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FIGURE 5 .  Contour plots for the case R = 20000, Q = 100, q = 5 ,  b, = 10, = 1 and  A = I ,  
with boundary conditions A. 
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FIGURE 6. The time-dependence of h at the centre of the cell, r = z = 0.5, for the case R = 20000, 
Q = 30, q = 0.2, b, = 20, u = 1 and A = 1, with boundary conditions A. 

The flux of vertical current through the cylinder ends is fixed by the boundary 
condition b = b, at r = A .  Near the base of the rope, the vertical current has its 
maximum on the axis, and drops rapidly to below the mean value (2b,) at the edge of 
the flux rope. The angular momentum distribution is not that dissimilar to the 
kinematic case, the dominant contribution coming from the interaction of the vertical 
current with the radial field splayed out at the top of the cell. However, because the flux 
rope is much less concentrated in the dynamical case, the angular momentum, and 
particularly the angular velocity, is larger lower down the flux rope. The corresponding 
angular velocity is, however, more concentrated near the outside edge of the flux rope. 

The azimuthal field can, in principle, affect the vorticity through the terms i3b2/i3z 
and ah2/8z, but changing b, from 0 to 10 hardly changes the vorticity distribution at 
all, so the dynamical effect of the azimuthal field is slight compared to the effect of the 
poloidal field in these flux rope solutions. 

4.2. Oscillatory solutions 
If q is small, so that magnetic diffusion is large and the magnetic Reynolds number is 
moderate, a concentrated flux rope does not develop. At small Q steady solutions 
occur, but as Q is increased, periodic oscillations occur. This is actually rather 
surprising; although the linear theory of $ 3  shows that a Hopf bifurcation can occur 
at small q, it also suggests that oscillations can occur only at negative Rayleigh number, 
whereas we are finding oscillations at positive Rayleigh number. The basic linear 
physical mechanism is that gravity waves are rendered unstable by the pinch effect 
coming from magnetic flux diffusing into the fluid. This cannot operate at positive 
Rayleigh number, as gravity waves can only exist in a stably stratified medium. The 
mechanism must therefore be a nonlinear one, a view confirmed by our numerical 
experiments. 

In figure 6, we show the angular momentum at the centre of the cell as a function 
of time, for the case R = 20000, Q = 30, q = 0.2, b, = 20. The shape of the graph 
suggests that the system is flipping between two states, and this is confirmed by contour 
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Stream function (4.35 x lo-*, 1.83 x 10') 

Potential vorticity (-5.31 x lo3, 1.29 x lo3) 

Magnetic stream function 

Angular momentum (0, 7.29 x 10') B4/R (1.23 x lo', 4.37 x 10') rn 

Angular velocity (0, 4.27 x 10') Z-current (2.45 x 10'. 8.74 x 10') 

FIGURE 7(a).  For caption see p. 313. 
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(b) 
Stream function (-6.62,7.39) 

Potential vorticity (-1.73 x lo3, 1.16 x lo3) 

Angular momentum (-4.4, 7.24 x 10') 
I 

Angular velocity (-1.2 x lo2, 2.19 x lo2) 

Magnetic stream function 

Temperature 

B,/R (1.66 x lo', 3.98 x 10') 

Z-current (3.31 x lo', 7.96 x 10') 

FIGURE 7(b) .  For caption see facing page. 
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(4 
Stream function (-1.83 x lo', 6.57 x lo-*) 

Potential vorticity (-1.3 x lo3, 5.34 x lo3) 

Magnetic stream function 

Temperature 

Angular momentum (-7.31 x lo', 0) 

Angular velocity (4.28 x lo2, 0) 

B,/R (1.23 x lo', 4.38 x 10') 

Z-current (2.45 x lo', 8.76 x 10') 

FIGURE 7. Contours plots at three different times during the oscillation shown in figure 6, 
(a) time t = 2.22; (b) time t = 2.41 ; (c) time t = 2.54. 
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Stream function (-1.41 x lo', 1.4 x 10') Magnetic stream function 

Potential vorticity (-1.62 x lo3, 1.62 x 10') 

Angular momentum (-7.47 x lo', 7.44 x 10') 

.............. 

Angular velocity (-3.98 x lo2, 3.95 x lo2) 

Temperature 

B,/R (1.86 x lo', 6.1 x 10') 

Z-current (3.73 x IO', 1.22 x lo2) 

FIGURE 8. Contour plots for the case R = 20000, Q = 30, q = 0.2, b, = 30, = 1 and A = 1 ,  
with boundary conditions A. At this value of b,, a two-cell solution is preferred. 
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plots at three different times : in figure 7 we see the nature of the solutions at the times 
t = 2.22,2.41 and 2.54. In figure 7(a) the solution corresponds to a single cell with fluid 
rising at the axis; this can be inferred from the temperature and magnetic stream 
function plots. The circulation is essentially in one direction except for a small counter- 
cell near the axis at the top. The angular momentum is all of one sign, and b has a 
maximum on the axis near the bottom of the cell. As time proceeds, the small counter 
cell grows, and is roughly equal in size with the original cell in figure 7(b). This phase 
of two cells of equal strength lasts only briefly, and is followed by a state typified by 
figure 7 ( c )  which has fluid sinking at the axis. This is essentially the opposite parity to 
figure 7 (a) under transformation (4.1). The oscillation consists, therefore, of periodic 
oscillation between two states of opposite parity. If the value of b, is reduced, the 
period of the oscillation increases: at b, = 22, the period is 0.492: at b, = 20 it is 0.693, 
whereas at b, = 18 it has increased right up to 1.574. We conjecture that the solution 
approaches a heteroclinic orbit as b, is reduced below 18. At the heteroclinic point, the 
symmetrical pair of steady solutions must lose their stability to a perturbation which 
connects the two solutions. The full bifurcation diagram associated with this behaviour 
is currently under further investigation. The behaviour is probably connected with 
instability to a double-cell solution; if we increase b, the oscillatory branch eventually 
jumps to a steady double-cell solution of the type shown in figure 8, which is for b, = 
30. The preference for a two-cell solution as b, is increased is predicted by linear theory 
(figure 2). This preference is overruled at large q by the nonlinear formation of flux 
ropes, but at small q the magnetic field solutions resemble linear solutions, and breakup 
into smaller cells can occur. 

5. Stress-free boundary conditions 
The boundary conditions adopted in 94 were those appropriate to a periodic 

configuration in z .  We now consider what differences occur if we adopt boundary 
conditions B, that is (2.12). These conditions differ from the periodic ones only in the 
stress-free boundary conditions imposed on the angular momentum. Since stress-free 
conditions have been imposed on the meridional flow, this is a more realistic 
condition for an isolated convective cell occurring in a region of twisted magnetic field. 

In figure 9 we show the solution for R = 20000, Q = 100, q = 5 and b, = 10, the 
same parameter values as for figure 5. Comparing these two figures, we see that $, 0, 
x and Tare very little changed. This reflects the fact noted earlier, that the Lorentz and 
centrifugal forces associated with b and h, respectively, are not very significant, so 
changes in b and h do not feed back into the other fields. However, the plots of h and 
b in figure 9 are significantly different from those of figure 5. The most remarkable 
change is that near the axis the sign of b is reversed. The effect of the convection has 
been to twist the flux rope in the opposite direction from the way the initial field is 
twisted. The angular momentum distribution is affected directly by the change in 
boundary conditions but h is still all of one sign in figure 9; the angular velocity 
distributions are not so very different, having a maximum at the edge of the flux rope, 
but which in figure 9 occurs below the figure 5 maximum. 

The explanation of the reversal of b comes from conservation of angular momentum. 
If we integrate (2.3) over the volume of the cylinder, we obtain 

Now u.dS will always be zero, since the mass is contained in the cylinder. With 
11-2 



316 C. A .  Jones and D. J.  Galloway 

Stream function (-5.09 x low2, 9.83) 

Potential vorticity (-3.89 x lo3, 7.69 x 10') 

Angular momentum (3.12 x 1.21 x 10') 

Angular velocity (6.78, 1.36 x lo2) 

Magnetic stream function 

TemDerature 

B,IR (-3.77 x lo', 1.0 x 10') 

Z-current (-7.54 x lo', 3.1 x 10') 

FIGURE 9. Contour plots for the case R = 20000, Q = 100, q = 5,  b, = 10, u = 1 and A = 1, 
with boundary conditions B. Note the appearance of reversed sign b. 
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stress-free boundary conditions, the third integral will also vanish, as there can be no 
viscous torques acting on the cylinder from outside. The Lorentz torque must therefore 
vanish in a steady state so 

/sBrzb*dS = 0. (5.2) 

Now, there is no contribution from the curved surface since there is no radial B 
there. The integral over the bottom surface must be very small unless b is enormous 
there : this is because B, is concentrated into a rope near the axis, so B, is small outside 
the rope, and the term is weighted with r2 .  Such a large b would lead to a Lorentz force 
in the meridional direction which could not be balanced, so we conclude that the 
bottom boundary cannot produce much Lorentz torque. The contribution from the 
top surface must therefore be small also. Since b is prescribed as b, at r = A, and B, 
is comparatively uniform over the top surface, the integrand cannot be uniformly 
small : it can only achieve a small overall value by cancellation of positive and negative 
fractions. So b has to have a sign change over the top surface, and hence over the whole 
cell. If we apply the same argument to the figure 5 case, it is still true that the Lorentz 
torque coming from the bottom and the side is small, but now the large term coming 
from the top is balanced by a large viscous stress: note the large angular momentum 
gradient at the top of the cell in figure 5. 

We now examine the degree to which the field is twisted backwards. Near the bottom 
of the cell, - b reaches its maximum, but - B+ is larger near the top. In consequence, 
the maximum reverse pitch angle is only about 6" at the bottom, but is approximately 
64" at the top, attained at r - 0.35. This is almost as much as the forward pitch angle 
of the initial state at this radius. 

Some runs were also performed with boundary conditions B at small q. Oscillatory 
solutions of a similar nature were found in much the same region of parameter space 
as for conditions A, suggesting that the occurrence of the periodic solutions is quite 
robust. 

6. Azimuthal field created by imposed external flow 
6.1. Steady solutions 

We also considered the problem where no fixed aximuthal field is specified, but 
azimuthal field is created by differential rotation within the convecting cell. We assume 
here that this imposed azimuthal flow is created by some external agency, such as the 
influence of rotation on large-scale convection in the solar convection zone, for 
example. We model this by assuming that the angular momentum at r = A has a 
specified value h, = u,A2.  We do not then need a non-zero b, to produce azimuthal 
field, so b, is set to zero. This corresponds to boundary conditions C (2.13). 

This type of forcing can generate narrow, twisted flux ropes because we no longer 
rely on the Lorentz force to produce enhanced azimuthal field. At small Q and large 
magnetic Reynolds number we get a thin flux rope, and, provided the angular velocity 
near the rope is of the same order as that imposed at the edge of the cell, a strong 
azimuthal field is produced. 

In figure 10 we show the case R = 50000, Q = 1, q = 1, and h, = 10. As this value 
of Q is quite modest, the flux is strongly concentrated into a rope. Comparing the 
stream function, potential vorticity, temperature and magnetic stream function plots 
with those of figure 4, we see they are quite similar, so the value of Q is low enough 
for them to be unaffected by Lorentz forces, the only exception being the negative 
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Stream function (0. 2.05 x 10') 

Potential vorticitv (-2.6 x lo3. 2.4 x 10') 

Angular momentum (2.2 x 1.02 x 10') 

Angular velocity (7.55, I .  15 x lo3) 

Magnetic stream function 

FIGURE 10. Contour plots for the case R = 50000, Q = 1, q = 1, h, = 10, (+ = 1 and A = 1, 
with boundary conditions C. 
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potential vorticity near the axis. This is due to two effects: the Lorentz force near the 
axis is not quite negligible, because the large local value of the vertical field strength 
enhances its effect. Even if Q is made much smaller, there is still some negative vorticity 
near the axis produced by the angular momentum distribution: this can be eliminated 
by reducing ha. 

The big difference between this case of external rotation forcing and forcing by an 
imposed vertical current is in the size and distribution of the azimuthal field and 
velocity. The value of Q is sufficiently small for the angular momentum not to be 
significantly affected by the Lorentz force; also the value of ha is sufficiently small for 
there to be little influence of the angular momentum on the potential vorticity except 
near the axis. The distribution of angular momentum is therefore governed by 
advection and diffusion from the velocity field determined by the convection. Not 
surprisingly, therefore, the angular momentum plot in figure 10 resembles the magnetic 
stream function plot, which is governed by the same processes. 

The angular momentum distribution gives rise to an angular velocity distribution 
which has a strong maximum near the axis, and is largest at the bottom. It is here that 
conservation of angular momentum leads to strong spin-up (Galloway 1978), the 
'spinning ice-skater' phenomenon. The distribution of b drawn out by the w-effect can 
be predicted from the magnetic stream function plots and the angular velocity. b is all 
negative, the largest value occurring on the axis near the top of the rope. aw/az is 
negative here stretching out vertical field, and this is reinforced by negative ao/ar 
stretching out the radial component of field. Note that the strength of b is much 
larger than that occurring in figure 5 .  

The different distribution of b produced by an imposed external flow means that the 
field is strongly twisted near the top of the cell with a pitch angle near 90". In this case 
the strongest azimuthal field occurs at the top of the cell where the vertical field is 
comparatively weak: the degree of twist is much smaller near the bottom of the flux 
rope where B, is stronger and B, is weaker. 

In figure 11 we show the case R = 50000, Q = 30, q = 1 and ha = 10. The larger 
value of Q means that Lorentz forces have come into play. Their effect on the axial flow 
is predictable : the broadening of the flux rope, and the reverse flow near the axis being 
clearly visible. The most striking change, however, is the angular momentum reversal 
at the top of the cell. This reverse flow is produced by the Lorentz force: if a path along 
the axial field lines near the top of the cell is followed, b varies only slowly but r2b 
becomes more negative. The term ( B - V )  br2 is therefore negative, and hence provides 
the negative torque required. One might expect that an argument such as that used in 
$ 5  to explain the reversal of b could be used. If we integrate (2.4) over the cylinder, we 
obtain 

gJvbdv  =-Jsub.dS+Js,- Bh dS+ lsr ,V(br2).dS. 1 

The first integral on the right-hand side vanishes, since there is no flow across the 
boundaries, and the contributions to the third integral at the curved surface and the top 
and bottom boundaries vanish because of the boundary conditions imposed on b. 
However, there is a non-zero contribution from the third integral at the axis: if we 
consider a cylinder of radius E and then let c + 0 we see there is dissipation of toroidal 
field at the axis. In consequence, the second integral is not necessarily zero. 

The distribution of b has also been significantly changed by the Lorentz force. The 
maximum negative value is no longer at the top of the cell but is on the axis about half- 
way up. The magnitude of b is also reduced by the Lorentz force, but this is not 
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Stream function (-8.84 x lo-', 1.59 x 10') 

Potential vorticity (-1.44 x lo4, 1.61 x lo3) 

Angular momentum (-5.42, 1.0 x 10') 
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FIGURE 11. Contour plots for the case R = 50000, Q = 30, q = 1, h, = 10, u = 1 and A = 1, 
with boundary conditions C. Note the appearance of reversed sign h. 
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surprising as the angular velocity gradient is much reduced because of the broadening 
of the magnetic flux rope. 

6.2. Oscillatory solutions 
Oscillatory behaviour generally resembling that found in $4 was also found in this case. 
It was found at small Q, so Lorentz force is not important, at large q (the opposite limit 
from the $4 case) and at h, - 15. Clearly, the dynamical effect required to produce 
oscillations is supplied by the term i)h2/i)z in the equation of motion (2.2). The period 
of the oscillation is long (about 5.0 in units of the thermal diffusion time at h, = 14) 
and the form of the oscillation is a continual flipping between states with fluid rising 
and then falling at the axis, similar to figures 7(a )  and 7(c). However, the transition 
between these states involves two cells in the radial direction rather than two cells in 
the vertical. So the effect of the angular momentum is evidently to exert a preference 
for tall thin cells rather than short fat ones. Apart from this distinction, the 
phenomenon appears similar to the small q oscillations, and probably arises from a 
heteroclinic orbit. 

7. Conclusions 
We first summarize the answer to the question of whether strongly twisted ropes of 

magnetic flux can be formed by convection. A simple but important feature is that 
advection by a meridional flow does not expel the azimuthal field produced by a 
uniform axial current, it leaves it unchanged. If acting on a non-uniform current, 
advection will tend to produce uniformity, but this does not produce a current rope. 
In this respect, the vertical current behaves quite differently from the vertical field, 
which is concentrated into a rope by advection provided the magnetic Reynolds 
number is large. 

In order to produce a concentrated current, we must rely on differential rotation to 
twist the vertical flux rope produced by advection of meridional flux. It is at this point 
that the difference between the two methods of imposing azimuthal flux has a big effect. 

If the azimuthal flux is maintained by a fixed vertical current through the cell, as with 
boundary conditions A and B, differential rotation can only be produced by the action 
of Lorentz force. This, in effect, rules out the possibility of strongly twisted flux ropes 
developing. If the Chandrasekhar number Q is small, Lorentz forces are weak, very 
little azimuthal motion is driven, and so very little w-effect occurs to generate new B4. 
On the other hand, if the Chandrasekhar number is large, Lorentz forces act on the 
meridional flow and prevent the formation of a concentrated flux rope. In this case, a 
significant differential rotation can develop, but it has no concentrated vertical flux to 
work on. We conclude that whatever the value of Q, it is not possible to produce 
concentrated flux ropes with O( 1) twist using a fixed vertical current through the cell. 

If the azimuthal field is maintained by rotational driving, keeping the outer edge 
rotating at fixed velocity while the cell convects, strongly twisted ropes can be formed. 
In this case we do not require the Lorentz force to generate the w-effect, as this is 
produced by the redistribution of angular momentum by the convection. At small Q 
this differential rotation can act directly on the concentrated vertical flux to produce 
concentrated azimuthal flux. This is the mechanism envisaged by Childress (1979). We 
may summarize the distinction between the two cases by noting that for concentrated 
twisted flux ropes we need a flux of vertical vorticity through the cell; a flux of vertical 
current density is not sufficient. In any case, this is the mechanism we have in mind for 
the situation in the Sun, and it appears to be effective; convection can intensify 
vorticity and hence generate field-aligned currents. 
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The next conclusion, which we found quite surprising, is that with stress-free 
boundary conditions convection can actually produce negative sign azimuthal flux, 
when only positive flux is imposed. There is an analogous result in the case of imposed 
positive rotation, where regions of negative u4 occur, although the details of the 
mechanisms involved may be rather different in the two cases. 

In the case of negative flux production, one would expect that the Lorentz force 
would produce a differential rotation that would generate azimuthal field opposed to 
any initially present: this is, after all, how a torsional Alfven wave is formed. The 
surprise is that in the steady state this effect is strong enough to produce a negative 
azimuthal field with a larger magnitude than the imposed positive field. As we saw in 
$ 5 ,  the phenomenon can be explained in terms of the need for the total external torque 
produced by the Lorentz force on the whole cell to vanish. 

The reason for negative angular velocity production is still not entirely clear to us, 
in the sense that we have no simple argument which shows when negative angular 
velocity must occur. What is clear is that the effect can only be produced by Lorentz 
force : advection and diffusion of angular momentum on their own can never produce 
negative angular momentum. As we saw in $6, the negative angular momentum 
produced in figure 11 is consistent with the Lorentz force pattern, but we cannot say 
how general the phenomenon is. From our numerical experience, we believe that 
angular momentum reversal occurs in a wide range of parameter space. 

The third point of interest is the existence of oscillatory solutions in a much wider 
variety of circumstances than linear theory would indicate. Indeed, in this twisted flux 
problem, linear theory is an even feebler guide to what actually occurs than is the case 
in purely axial magnetoconvection. In that problem, Galloway & Moore (1979) found 
that time-dependent behaviour occurred more or less where expected from linear 
theory, but the form and periods of the time-dependence were poorly determined by 
linear considerations. Here we find time-dependence where none is predicted by linear 
theory. The form of the oscillation, and the fact that periodic branches terminate in 
heteroclinic orbits, indicate that these are nonlinear oscillations. They appear to be 
associated with changes in the convection pattern, where the preferred number of rolls 
in the box is changing between one and two. A similar phenomenon has recently been 
found in spherical a’-dynamo models by Hollerbach (1991). This suggests that the 
phenomenon is rather general, and amenable to explanation in terms of amplitude 
equations. Physically, such oscillations can only occur when there is a significant input 
from either h or b into the equation of motion for the axial flow. This requires either 
Lorentz force to be significant (i.e. non-negligible (2) or the vertical angular momentum 
gradients to be significant. The presence of either can give rise to these long-period 
oscillations. 

In this paper we have concentrated on the more mathematical aspects of the 
problem. A difficulty is the large number of non-dimensional parameters, coupled with 
the variety of the boundary conditions that can be applied. It is impractical to conduct 
a systematic search; our procedure has instead been to isolate certain physical ideas 
and pick those parameters and boundary conditions that seem best for examining 
them. There are undoubtedly other kinds of possible behaviour yet to be discovered. 
Regarding applications, it seems twisting convective motions could generate field- 
aligned currents on the Sun. Although our model is Boussinesq, there is no reason why 
this mechanism would not work equally well in a fully compressible fluid, providing the 
degree of evacuation of the flux tube is not extreme. The way these currents return is 
very dependent on the boundary conditions, but for our case C (probably the most 
appropriate for the Sun of those treated), most of the current passes through the cell 
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in or around the axial flux rope, with a lesser contribution at the outer wall. This gives 
little information on the return path, but suggests the cell tries to pass the currents up 
into the atmosphere. In our figures 10 and 11, the currents are all of one sign. Applying 
Ampere’s law shows that B, must be fairly substantial throughout the cell; in our 
geometry there is no way around this if the currents do not return with opposite sign. 
As stressed above, such fields are transported passively, without significant effect on 
the driving convection. This effect would have observable consequences ; currents of 
order 10l2 A are thought to be generated by twists (Melrose 1991), and the associated 
horizontal B+ would be around 1OP2T, i.e. 100G, say 10000 km away from the 
fluxrope. This ought to be detectable; correspondingly, its absence would tell us that 
the currents are returning somehow without our seeing them. We did a few runs with 
b = 0 at r = A ,  thus forcing no net current to pass through the top and bottom 
boundaries; in those cases, the returning z-current occurred mainly in a sheath 
surrounding the fluxrope. 

To assess what this means for the solar atmosphere, it is necessary to add a model 
for the upper regions, specifying how the magnetic field lines return to the photosphere. 
This is a very difficult problem, though some progress has been made in considering the 
reaction to twisting of the atmosphere alone, both analytically (Zweibel & Boozer 
1985; Lothian & Hood 1989; Browning 1990) and numerically (Steinolfson 1989). 

D.J.G. is grateful for support from an SERC visiting fellowship, Grant no. 
GR/G41580. 

Appendix. Numerical methods 
Numerical solutions to equations (2.1E(2.8) were found using a code based on the 

conservative finite-difference approach described in Roberts & Weiss (1966), and in 
Moore, Peckover & Weiss (1974). The code is an extension of that described in 
Galloway & Moore (1979), and is based on a version developed in collaboration with 
Moore for use in cylindrical shell geometry. This version solves the evolution equation 
for x in its conservative form (2.5), rather than in the non-conservative form used in 
Galloway & Moore (1979); a similar equation (2.3) is solved for the evolution of h. 
Because our computational domain includes the axis, we had to modify the scheme 
locally to cope with the coordinate singularity there. This required a variety of devices, 
of which a representative selection will be given presently. 

Away from the axis, the procedure adopted is straightforward. We will describe it 
here for equation (2.3); the others are treated analogously. The quantity h;lc is 
regarded as the average over the annular region ( j -  1) Ar < r < ( j +  1) Ar, (k- 1) Az < 
z < (k+ 1)Az, and the divergence terms are evaluated as fluxes out of the same 
annulus, or, in the case of the diffusive terms, as fluxes out of the annulus ( j - i )  Ar < 
r < ( j + + ) A r ,  (k-+)Az < z < (k+$)Az  suitably scaled up by the ratio of volumes, 
which is 4. Here Ar = Az = A is the mesh size, and n refers to the timestep. The mesh 
sizes and the diffusive maximum for the timestep are set up at the beginning of the run 
and the timestep is reset occasionally as demanded by the Courant condition, 
incorporating the various velocities and Alfvtn speeds. Advective fluxes are conserved 
across the large annuli and diffusive fluxes across the small ones. Note that away from 
the axis, the same equations result when the quantities are regarded as averages over 
the small annuli, with the advective fluxes scaled down accordingly. This is not true at 
the axis. 



324 C. A .  Jones and D. J.  Galloway 

As in the earlier references, a leapfrog scheme is used on a pair of staggered meshes, 
with a Dufort-Frankel form for the diffusion term. Writing out the terms according to 
the above philosophy, the difference equation form of (2.3) becomes 

hn+l- hn ( 3 ,  At 3 ,  2nrj 2Ar 2Az = Adv. + Lor. + Visc. 

where 

r;+l, by!?, Az 
Lor. = -[( Qg X y 2  

4 

This can be rearranged to give an explicit expression to update hzk to hr,fl using 
variables on the alternate mesh (as in the earlier work, $ and x must be interpolated): 

n+1 - jAt 
hj ,k  - h:k+ 4j2(A)3 + uAt A(8j2 + 3) 

The above equation fails for the mesh point one out from the axis. The apparent 
singularity has no physical basis and is removed when we take into account the form 
h = h,(z, t )  r2 + . . . taken by h near the axis. Using this analytical form, we integrate over 
the cylinder 0 < r < Ar, (k- 1)  Az < z < (k+ 1)  Az to get an expression for the rate of 
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change of h, due to the advective flux terms in (2.3). We integrate over the smaller 
cylinder 0 c r < $Ar, (k  -$) Az < z < (k  + i) Az to get the rate of change due to the 
diffusive flux terms. Then we add the results to get the total rate of change of h,. 
Writing H = (Ar)'h, gives, after some manipulation, the difference equation 

+ gA[H:,'#+, + Ht,$-l + 8 h r 3 -  10H:, Ic , 
1 )  

where subscript 0 denotes the axis and subscript 1 the meshpoint one out. The 
asymptotic forms for the other variables as r + 0 are that $ and x go like r2 whilst 0, 
b, T and J go like functions of z+ terms of order r2.  Some of these forms have been 
exploited in deriving the above formula; note too that the vertical velocity (resp. 
magnetic field) on the axis is 2/(Ar) ,  times $ (resp. x) one mesh point out (cf. Galloway 
& Moore 1979). The conservation properties of the scheme must be sacrificed here; h 
has one definition in terms of the average over the large cylinder (for advective fluxes 
and forces), and another based on the average over the small cylinder (for diffusive 
fluxes). As stated above, these can be combined sensibly only away from the axis. The 
scheme adopted here has the advantage that it reduces to the appropriate form when 
either advection or diffusion operates in isolation. 

Once Hi s  known, an equation to update h one meshpoint out can be derived along 
similar lines. In fact, virtually all the equations (and interpolation formulae) need 
special treatment at the axis and one meshpoint out. The details are too extensive to 
give here, but the general approach was as for the equation for H given above. For 
instance, we derived an equation to update the value of 0 on the axis. Even though it 
is correct to second order to set the value there equal to the value two meshpoints out 
(Jones et al. 1976, appendix), in practice it is inaccurate because all quantities change 
rapidly near the axis. 
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